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Abstract— This research introduces a framework combining
synthetic data and vision-language models to detect unsolvable
robotic tasks, categorized into five classes. Using fine-tuned
LLaVA v1.5-7b, our model achieved a task rejection success
rate of 78.05% on synthetic data by Stable Diffusion V3.5
Large and 81.00% in Habitat-Sim. These results demonstrate
the approach’s effectiveness in enhancing robot decision-making
in simulated and real-world scenarios.

I. INTRODUCTION

A. Background and Motivation

In recent years, autonomous robots have become increas-
ingly prevalent in various domains, from manufacturing to
household assistance. However, these systems often lack
the crucial ability to recognize when tasks are inherently
impossible to complete. This limitation can lead to wasted
resources, potential safety risks, and decreased efficiency in
human-robot collaboration.

B. Problem Statement

Despite advances in robotics and artificial intelligence,
current systems struggle to identify unsolvable tasks, par-
ticularly in unstructured environments. This research ad-
dresses the fundamental challenge of enabling robots to
autonomously detect and appropriately respond to impossible
tasks through the novel use of synthetic data and vision-
language models.

C. Contributions

The primary contributions of this paper are:
• Develop a comprehensive framework for categorizing

unsolvable robotic tasks
• Create a synthetic data generation pipeline for training

robust task feasibility detection models
• Design and implement a Vision Large Languge Model-

based system for unsolvable robotic task detection
• Evaluate the system’s performance across both simu-

lated and real-world scenarios

II. RELATED WORK

A. Large Language Models in Robotics

Large language models (LLMs) have increasingly become
integral to robotic perception, planning, and decision-making
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due to their ability to parse and generate human-like textual
instructions. Early efforts in this domain primarily focused on
interpreting task instructions in structured scenarios, relying
on predefined ontologies and templates [1]. However, more
recent frameworks, such as the Socratic Models approach
[2], have demonstrated zero-shot multimodal reasoning ca-
pabilities, allowing robots to integrate vision and language
inputs with minimal task-specific fine-tuning. Similarly, the
SayCan framework [3], often summarized as “Do As I
Can, Not As I Say,” grounds abstract language instructions
in the robot’s physical context and action space, enabling
more nuanced decision-making and better generalization to
previously unseen tasks.

Beyond these seminal works, various studies have pro-
posed leveraging LLMs to encode commonsense knowl-
edge, social cues, and domain-specific heuristics into robotic
control policies. For example, recent research has explored
using LLMs to interpret ambiguous human commands and
transform them into formalized action plans [4], or to com-
plement visual representations through multimodal models
like PaLM-E [5], VIMA [6], and CLIPort [7]. These ap-
proaches highlight the growing trend of integrating large-
scale language modeling with embodied reasoning, moving
toward more flexible, adaptive, and human-aligned robotic
systems.

B. Task Feasibility Assessment

Determining the feasibility of a given robotic task histor-
ically relied on rule-based systems and analytical models.
Early work in this space focused on geometric reasoning
and motion planning constraints, examining kinematic and
dynamic feasibilities under deterministic assumptions [8].
Such models often assume structured, well-defined envi-
ronments and rely on precise sensor information. While
successful in controlled settings, they struggle to generalize
to unstructured, dynamic contexts.

More recent advances in task feasibility assessment draw
on data-driven approaches, such as learning cost functions
from demonstrations [9], inferring affordances from per-
ception [10], [11], and employing imitation learning or
reinforcement learning techniques to recognize when a task
cannot be completed under given constraints [12], [13]. In
parallel, methods have been developed for uncertainty-aware
planning and decision-making that enable robots to evaluate
their likelihood of success before executing a task [14], [15].
However, these approaches often rely on extensive domain
knowledge or large-scale real-world data collection, making



them difficult to scale and adapt to new tasks, objects, or
environments.

C. Synthetic Data Generation and Simulation-to-Real Trans-
fer

The generation of synthetic data has gained traction as
a promising method to reduce reliance on expensive, time-
consuming real-world data collection. Synthetic datasets
enable large-scale, diverse training scenarios and can be
produced in simulation with adjustable complexity [16], [17].
These methods leverage photorealistic rendering engines and
physics simulators to create rich environments for training
perception and policy models without incurring the costs and
safety risks of on-site data gathering.

However, a critical challenge lies in bridging the “reality
gap” between synthetic and real-world data. Techniques such
as domain randomization [16], style transfer [18], [19],
and adversarial domain adaptation [20], [21] have been
proposed to ensure that models trained on synthetic data
generalize effectively to real-world scenarios. These methods
randomize textures, lighting, and object appearances during
simulation or apply learned transformations to synthetic data
to better match real-world distributions. By enhancing model
robustness, such strategies have improved the reliability and
transferability of learned policies, including those aimed at
identifying task feasibility. As robots become more adaptable
and operate in less structured environments, synthetic data
generation and robust sim-to-real transfer methodologies will
play an increasingly central role in training systems capable
of assessing and responding to task impossibilities.

In summary, the intersection of LLM-based reasoning,
data-driven feasibility assessment, and synthetic data genera-
tion sets the stage for our proposed approach. By combining
advanced vision-language models with strategic synthetic
data generation techniques, we aim to enable robots to
autonomously identify when tasks are inherently unsolvable
and adjust their behavior accordingly. This fusion builds
upon and contributes to the existing body of work on inte-
grating language understanding, multimodal perception, and
adaptive policy learning in real-world robotic applications.

III. METHODS

A. Task Categorization Framework

To systematically identify and address unsolvable tasks
based on our robot’s specific capabilities, we first devise a
categorization framework that decomposes problem instances
into distinct classes. This taxonomy enables principled data
generation, model training, and evaluation across a controlled
set of problem dimensions. Our framework delineates five
categories of infeasibility: Status Conflicts, Item Absences,
Logical Contradictions, Ambiguous Tasks, and Ethical Con-
straints, while considering our robot’s physical specifications
(maximum reach height of 2m, lifting capacity of 5kg), envi-
ronmental constraints (indoor operation only, stable surfaces
required), and cognitive limitations (basic object recognition,
no abstract reasoning).

1) Status Conflicts: Status conflicts occur when the re-
quested action is inherently contradictory to the current state
of the environment. For example, instructing an agent to open
a door that is already open or to close a container that is
already sealed. Within this category, we label each scenario
based on an identifiable mismatch between the task directive
(e.g., “open the door”) and the precondition derived from the
world state (e.g., “the door is already open”). By assembling
a variety of such conflicts, we ensure that our model learns to
reject requests that do not necessitate any additional action.

2) Item Absences: In many real-world settings, tasks
cannot be completed due to the absence of necessary items.
For instance, preparing a salad without any vegetables or
fixing a device without its essential components. We define
a systematic approach to identifying such absences by query-
ing task prerequisites and verifying their availability in the
environment. Our synthetic data generation includes prompts
that highlight the need for specific objects and contrives
scenes in which these objects are missing. This ensures that
the model not only detects the infeasibility but can also
articulate which resource is lacking.

3) Logical Contradictions: Logical contradictions arise
when the task’s internal instructions or assumptions are
mutually incompatible. For instance, requesting that an agent
place an object both inside and outside a container simulta-
neously, or perform actions that defy fundamental physical
laws. We engineer such contradictions by combining instruc-
tions that inherently clash, ensuring that the model learns to
recognize and reject these scenarios. Such training instances
challenge the model to look beyond surface-level features,
encouraging a deeper semantic and contextual understanding
of the requested tasks.

4) Ambiguous Tasks: Ambiguous tasks present incom-
plete, underspecified, or contextually unclear instructions.
Examples include requests where key details (such as
which object to manipulate or how to resolve a specified
goal) are omitted. By introducing a range of ambiguity
levels—ranging from mild under-specification to complete
opacity—we push the model to identify tasks that cannot
be resolved due to insufficient information. This category
complements the others by focusing on the clarity and
completeness of the instructions, rather than contradictions
or resource-based impossibilities.

5) Ethical Constraints: Ethical constraints involve tasks
that require actions conflicting with moral principles, societal
norms, or legal guidelines. For example, instructing an agent
to falsify medical records, replace authentic items with
counterfeit ones, or destroy objects without justification. In
this category, we design scenarios that explicitly highlight
the ethical boundaries of robotic actions, ensuring that the
model learns to identify and reject requests that violate
such constraints. By embedding diverse ethically challenging
situations in the synthetic dataset, we enable the model to
distinguish between permissible and impermissible actions.
This category focuses on teaching the model to recognize
tasks that, while physically feasible, are morally or legally
unacceptable.



B. Synthetic Data Generation Pipeline

To train and evaluate our model effectively, we construct
a synthetic dataset capturing a wide range of unsolvable
tasks. Our data generation pipeline begins with GPT-4 gen-
erating a diverse set of 500 unsolvable tasks, comprising
100 distinct scenarios for each of our five categories. Each
task is carefully crafted to reflect real-world scenarios while
incorporating our robot’s specific limitations, such as its
2m height limit, 5kg weight restriction, and inability to
perform fine motor tasks. This systematic approach ensures
comprehensive coverage of potential edge cases.

1) Image Generation: We utilize Stable Diffusion 3.5
Large to generate realistic, diverse visual scenes correspond-
ing to our five categories of unsolvable tasks. Our prompt
engineering strategy ensures comprehensive coverage: we
design textual prompts that highlight desired objects, states,
and logical inconsistencies, ensuring that each generated
image visually encodes the challenge. The resulting dataset
spans a variety of lighting conditions, object arrangements,
and background contexts, facilitating a robust understanding
of environment-dependent infeasibility.

2) Question-Answer Pair Creation: We leverage the
NousResearch/Hermes-3-Llama-3.1-8B model for creating
QA pairs that articulate the reasoning behind each gener-
ated scenario’s infeasibility. Hermes 3 is particularly well-
suited for this task due to its advanced agentic capabilities,
improved reasoning, and strong multi-turn conversation abil-
ities. The model generates questions that prompt analysis of
why given tasks cannot be completed, while the answers
provide detailed explanations of the underlying reasons,
referencing missing objects, contradictory instructions, or
inherent impossibilities. These QA pairs serve as training
examples that encourage the model to ground its reasoning
in both visual and textual cues, developing a structured,
explainable approach to unsolvable task recognition.

C. Model Architecture and Training Procedure

We build upon the LLaVA v1.5 7B model, which in-
tegrates a vision encoder with a large language model.
Our training focuses on fine-tuning the language model
components using parameter-efficient methods, while main-
taining the vision encoder’s representations. Specifically, we
do not train the vision encoder or the vision projector,
ensuring that the visual backbone remains fixed and stable.
Instead, we apply Low-Rank Adaptation (LoRA) layers
(USE LORA=True, LORA R=8, LORA ALPHA=8) to the
language model parameters, allowing efficient and scalable
adaptation without full model fine-tuning. Since our experi-
ments prioritize parameter efficiency, we do not employ Q-
LoRA or LoRA-based training of the vision components.
This configuration ensures that the training updates remain
lightweight, making it feasible to iterate on experimental
conditions rapidly.

For optimization, we adopt a learning rate of
LR = 2 × 10−5 with a maximum input sequence
length of MODEL MAX LEN=1024. We train for
NUM EPOCHS=10 epochs using per-device batch sizes

of PER DEVICE BATCH SIZE=8 and a gradient
accumulation step count of GRAD ACCUM=1. The
training procedure leverages the ZeRO-3 optimization
stage in DeepSpeed (DS STAGE=zero3) to enable
memory-efficient training, facilitating stable convergence
and performance improvements. Throughout training, we
monitor performance metrics and loss on validation splits
of the synthetic data to guide checkpoint selection and
hyperparameter refinement. This architecture and training
regimen synergize with our curated synthetic dataset and
task taxonomy, leading to a model capable of both visually
and textually grounded reasoning about task feasibility.
The resulting system effectively generalizes to a range
of complex scenarios, providing a strong foundation for
subsequent evaluations and real-world deployment.

D. Evaluation Method

To rigorously evaluate our model’s effectiveness in task
denial, we employ Qwen2.5-7B as an independent judge.
We formulate a structured evaluation prompt that assesses
three key criteria:

• Clear statement of inability to perform the task
• Explicit explanation of limitations
• Direct and honest communication
For each test case, we present Qwen2.5 with a structured

input containing:
• The original user request and reference model response
• Our model’s response
The evaluation prompt instructs Qwen2.5 to output a

binary score: “1” for successful task rejection that meets all
criteria, or “0” for unsuccessful attempts. We calculate the
overall success rate as:

Success Rate =

∑N
i=1 Binary Scorei

N
× 100% (1)

where N is the total number of evaluated responses.
The binary score provides a consistent way to evaluate the

model’s ability to correctly decline impossible tasks.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset Composition: Our dataset consists of 4920
synthetic images and question-answer pairs, covering all
five categories of unsolvable tasks. We initially generated
a total of 5,000 synthetic images, with 1,000 images allo-
cated to each category. However, during the task generation
process, some images failed to meet the requirements and
were filtered out, leaving us with 4,920 images. Ultimately,
the distribution of images across categories is as follows:
1,000 images for ambiguous tasks, 975 images for ethical
constraints, 999 images for item absences, 985 images for
logical contradictions, and 961 images for status conflicts.
Within each category, we grouped the images into sets of
10, where each group shares the same task but contains
unique images and corresponding question-answer pairs.
This structure aims to help the model truly understand the
irrationality underlying the tasks and prevent overfitting..



(a) Task: A robot is told to
make the room more comfort-
able without any further details.

(b) Task: A robot is instructed
to secretly record the personal
conversations of employees in
a workplace to monitor for dis-
sent.

(c) Task: A robot is asked to
pour coffee into a cup, but there
is no cup on the table.

(d) Task: A robot is instructed
to simultaneously switch a light
on and off.

Fig. 1: Collection of synthetic images generated by our
method.

2) Simulator Setup: We utilized Habitat-Sim, a high-
performance, physics-enabled 3D simulator developed by
Meta, which supports 3D scans of both indoor and outdoor
spaces. As Habitat-Sim provides an excellent platform for
robotics task planning in simulated real-world scenarios, it
allows us to evaluate our model’s performance by captur-
ing images within the simulator. Specifically, we captured
a total of 20 images from three official example scenes:
apartment 1, vangoghroom and 17DRP5sb8fy. We generated
100 tasks in the simulator, with 5 tasks from each category
created using a single image.

B. Results and Analysis

We present some of our synthetic images in Fig. 1. The
dataset was divided into a training set (80%) and a testing
set (20%). As shown in Table I, fine-tuning the foundational
model resulted in the agent achieving a higher success rate
in rejecting tasks proposed by humans. Additionally, the
performance of the model was evaluated in the simulator,
as illustrated in Table II, where the results demonstrate that
our model successfully rejects most unreasonable tasks.

V. CONCLUSIONS
This paper presents a framework for enabling robots to

identify and respond to unsolvable tasks through the integra-
tion of synthetic data generation and vision-language models.

(a) Task: A robot is asked to
replace the current centerpiece
with a floral arrangement, but
no flowers are available.

(b) Task: A robot is asked to
keep the window both open and
closed at the same time.

Fig. 2: Collection of images captured through the simulator
Habitat Sim.

TABLE I: Performance Comparison on SD Dataset

Model Name Fine-tuned Dataset Used Success Rate (%)

llava-v1.5-7b No NA 9.76
llava-v1.5-7b Yes SD 78.05

TABLE II: Performance Comparison on Habitat Dataset

Model Name Fine-tuned Dataset Used Success Rate (%)

llava-v1.5-7b No NA 9.00
llava-v1.5-7b Yes SD 81.00

Our approach demonstrated significant improvements in task
rejection capabilities, achieving success rates of 78.05% on
synthetic data and 81.00% in Habitat-Sim environments.
The systematic categorization of unsolvable tasks provides
a foundational taxonomy for future research in this domain.
Several important directions remain for future investigation:
bridging the sim-to-real gap for handling edge cases and
novel scenarios, incorporating active learning strategies to
address real-world failure modes, and expanding the model’s
capability to suggest alternative solutions when encountering
unsolvable tasks to enhance human-robot collaboration.

Looking ahead, this work opens new possibilities for
developing more reliable and safer robotic systems. The
ability to recognize and appropriately respond to unsolvable
tasks is fundamental to deploying robots in unstructured
environments where they must interact with humans and
handle unexpected situations. Future research could explore
integrating our framework with existing robot planning sys-
tems, developing more sophisticated reasoning capabilities
for complex multi-step tasks, and investigating methods for
continuous learning from real-world experiences.

The broader impact of this research extends beyond tech-
nical achievements. By enabling robots to better under-
stand their limitations and communicate them effectively,
our framework contributes to building more trustworthy
autonomous systems. This capability is essential for safe
human-robot interaction and could accelerate the adoption
of robotic solutions across various domains, from manufac-
turing to healthcare and domestic assistance.
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