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ABSTRACT

This report presents our work for the ECE 685D [Introduction to Deep Learning]
final project, focusing on text-to-image generation using Conditional Variational
Autoencoders (CVAEs) with CLIP embeddings. The project is carried out in two
stages. First, a CVAE model is trained on the FashionMNIST dataset to generate
images from short text labels. In the second stage, the model is extended to work
with the COCO dataset, enabling the generation of images from longer, more de-
scriptive text inputs. By utilizing CLIP embeddings as a condition, our approach
captures the semantic relationships between text and images, facilitating coherent
image generation. The results demonstrate the model’s capability to handle vary-
ing text complexities and datasets, highlighting the potential of combining CVAEs
with CLIP for text-to-image tasks.

1 INTRODUCTION

Text-to-image generation represents a fascinating intersection of natural language processing and
computer vision.Goodfellow et al.| (2016) It enables machines to translate textual descriptions into
visual content. This capability has widespread applications, from creative design to assistive tech-
nologies/Ko et al.|(2023)) where generating meaningful visuals from text can enhance accessibility
and automation. However, building effective text-to-image models requires addressing the semantic
gap between language and images, a challenge that continues to drive innovation in deep learn-
ing/Gartner & Romanov|(2024)

Conditional Variational Autoencoders (CVAEs) and Contrastive Language-Image Pre-training
(CLIP) have emerged as valuable tools for tackling this challenge. CVAEs provide a probabilis-
tic framework for generating images conditioned on specific inputs, making them well-suited for
tasks that require control and variability.Ivanovic et al.| (2020) CLIP, on the other hand, bridges
language and vision by learning a shared embedding space, enabling the encoding of semantic re-
lationships without explicit paired text-image datasets|Udandarao| (2022)) Together, these methods
offer a foundation for exploring text-to-image generation with flexibility and efficiency.

In this project, we aimed to understand and apply these concepts by integrating CVAEs with CLIP
embeddings to generate text-to-image images. We explored how CLIP embeddings encode semantic
features and how CVAEs can leverage this information to generate coherent and contextually appro-
priate images. This project not only provided hands-on experience with these techniques but also
deepened our understanding of their limitations and potential in real-world scenarios.

The following sections detail our implementation and findings, focusing on the interaction between
CVAESs and CLIP embeddings and their combined role in bridging text and image synthesis.

2 BACKGROUND INFORMATION

2.1 AUTOENCODER

Autoencoders are a type of neural network designed for unsupervised learning tasks, primarily used
to learn a compressed representation of input data/Baldi| (2012) The network consists of two main
components:
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2.1.1 ENCODER

The encoder compresses the input data into a latent representation of lower dimensionality. This
process involves a series of transformations that extract essential features, while discarding less
relevant details Pintelas et al.| (2021) Mathematically, the encoder can be represented as a function
go (), parameterized by ¢, which maps the input  to the latent space z.

2.1.2 DECODER

The decoder reconstructs the original input data from the latent representation. The goal is to mini-
mize the reconstruction error, ensuring that the output is as close as possible to the input/Shen et al.
(2018)) The decoder is represented as a function fy(z), parameterized by 6, which maps the latent
representation z back to the original data space.

The autoencoder is trained to optimize a reconstruction loss, such as mean squared error (MSE), to
ensure the fidelity of the reconstructed output.

2.2 VARIATIONAL AUTOENCODERS (VAES)

Variational Autoencoders (VAEs) extend the concept of autoencoders by introducing a probabilistic
framework. Instead of encoding the input as a single point in the latent space, VAEs encode it as a
probability distribution. This allows the model to generate new data by sampling from the learned
distribution, making VAESs particularly suited for generative tasks.Bond-Taylor et al.|(2021)

2.2.1 KEY FEATURES OF VAES

* Probabilistic Latent Space: The encoder learns to map the input z to a distribution ¢, (z |
), typically parameterized as a Gaussian with mean p() and variance o2 (z).

» Reparameterization Trick: To enable backpropagation through the stochastic sampling pro-
cess, the model applies the reparameterization trick, representing z as z = u + o - ¢, where
€ is a random variable sampled from a standard normal distribution.

2.3 Loss FUNCTION: EVIDENCE LOWER BOUND (ELBO)

The VAE loss function, known as the Evidence Lower Bound (ELBO), consists of two compo-
nents:Ding| (2022)

* Reconstruction Loss: Measures how well the decoder reconstructs the input from the latent
representation. This term ensures that the model retains the critical features of the input
data.

* Regularization Term: Uses Kullback-Leibler (KL) divergence to ensure that the learned
latent distribution g4 (2 | x) is close to a prior distribution p(z), usually a standard nor-
mal distribution. This regularization encourages the latent space to be well-structured and
continuous.

The overall Evidence Lower Bound (ELBO) is given by:
ELBO = Eq, (z/x) [log po(z | 2)] = KL (g4 (2 | ) [| p(2)),

where the first term is the reconstruction loss, and the second term is the KL divergence. The model
is trained to maximize ELBO (or equivalently, minimize its negative).

This framework allows VAEs to generate new data points by sampling the latent space, making them
a powerful tool for applications such as image generation and anomaly detection.

2.4 CONDITIONAL VAE

Variational Autoencoders (VAEs) inherently lack fine-grained control over the generation process.
In the standard VAE, the latent representation z is sampled from a prior distribution without incor-
porating additional contextual information, limiting the model’s generative capabilities/Bond-Taylor
et al.[|(2021)
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Conditional Variational Autoencoders (CVAEs), introduced by Sohn et al, address this limitation by
introducing an observable condition c that guides the generative process.Sohn et al.|(2015) While a
standard VAE learns p(x|z), a CVAE extends this to learn p(z|z, ¢), conditioning both encoder and
decoder distributions on auxiliary information.

This modification enables more directed and semantically controlled generative processes, allow-
ing the model to generate samples explicitly guided by the conditional variable/Bond-Taylor et al.
(2021) The key innovation lies in augmenting the probabilistic framework to incorporate additional
contextual information, providing greater flexibility in generative modeling.

3 OUR MODEL

3.1 LONG-TEXT MODEL

This project implements a Conditional Variational Autoencoder (CVAE) to generate images con-
ditioned on textual descriptions. The model consists of an encoder, decoder, and reparameterization
module. The encoder processes input images and combines them with textual features extracted
from captions using the pre-trained CLIP model. These text features are integrated with image data
by concatenation along the channel dimension. The encoder outputs the latent distribution param-
eters, mean (mu) and log variance (Logvar), which are sampled via the reparameterization trick
to create latent variables (z). The decoder takes these latent variables and conditions as input, re-
constructing the images through transposed convolutional layers. The output images are normalized
using a sigmoid activation to ensure pixel values are between 0 and 1.
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Figure 1: CVAE for Text-to-Image Generation with Clip text embeddings

Text features are extracted via CLIP’s encode_text method, mapping captions into a high-
dimensional semantic space. Training aims to minimize a combination of Binary Cross-Entropy
(BCE) reconstruction loss and KL Divergence loss, which regularizes the latent space to approx-
imate a standard normal distribution. Figure 1 illustrates our CVAE architecture for text-to-image
generation using CLIP text embeddings. The model takes input images (x) and corresponding CLIP
text embeddings (c), combining them as input to an encoder that outputs a latent representation
characterized by a mean (u) and standard deviation (o). A latent variable z is sampled from this
distribution using the reparameterization trick:

z=p+o0e e~N(0I)

The decoder then reconstructs the original image (x’) using both the latent variable z and the text
embeddings c. This process enables the generation of images conditioned on both visual input and
semantic information provided by the text embeddings. The output is reconstructed images with
dimensions matching the input images.

The following tables show our model structure.
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Layer Input Dimensions Output Dimensions Operation
Input 3 x 224 x 224 + condition 3 4+ condition_dim x 224 x 224 Concatenation
Convl (3 + condition_dim) x 224 x 224 32 x 112 x 112 Conv2D + LeakyReLU
Conv2 32 x 112 x 112 64 x 56 x 56 Conv2D + LeakyReLU
Conv3 64 x 56 x 56 128 x 28 x 28 Conv2D + LeakyReLU
Conv4 128 x 28 x 28 256 x 14 x 14 Conv2D + LeakyReL.U
Conv5 256 x 14 x 14 512 X 7 x 7 Conv2D + LeakyReLU
Flatten 912X 7 x 7 512 x T x 7 Flatten
Fully Connected (mu) 512 x 7 x 7 latent_dim Linear
Fully Connected (logvar) 512 x 7T x 7 latent_dim Linear
Table 1: Encoder structure of the CVAE model.
ENCODER STRUCTURE
Note: the Conv2D structure in encoder is (kernel=3, stride=2, padding=1)
DECODER STRUCTURE
Layer Input Dimensions Output Dimensions Operation
Input latent_dim + condition_dim 1024 Concatenation
Fully Connected 1 | latent_dim + condition_dim 1024 Linear + LeakyReLU
Fully Connected 2 1024 512 x 7T x 7 Linear + LeakyReLU
Reshape 912 X 7 x 7 512 x 7T x 7 Reshape
Deconvl 512 x T x 7 256 x 14 x 14 ConvTranspose2D + LeakyReLU
Deconv2 256 x 14 x 14 128 x 28 x 28 ConvTranspose2D + LeakyReLU
Deconv3 128 x 28 x 28 64 x 56 x 56 ConvTranspose2D + LeakyReLU
Deconv4 64 x 56 x 56 32 x 112 x 112 ConvTranspose2D + LeakyReLU
Deconv5 32 x 112 x 112 3% 224 x 224 ConvTranspose2D + Sigmoid

Table 2: Decoder structure of the CVAE model.

Note: the Conv2D structure in the decoder is (kernel = 3, stride = 2, padding = 1)

3.2 SHORT-TEXT MODEL
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Figure 2: CVAE for Text-to-Image Generation with One-hot Label

Figure 2 depicts our CVAE architecture for generating MNIST images conditioned on short text
labels encoded as one-hot vectors. The CVAE comprises an Encoder, a Decoder, and a latent space.
The Encoder concatenates the input image and one-hot label, processes them through a fully con-
nected layer with ReLU activation, and outputs the latent mean (y) and log-variance (log(c?)) of
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a Gaussian distribution. Using the reparameterization trick, the sampling of latent vector (2) is the
similar to the sampling mentioned in the long-text model. The Decoder concatenates z with the
one-hot label and reconstructs the image by passing the combined input through fully connected
layers with ReLU activation, followed by a sigmoid function to normalize pixel intensities. This
process ensures the latent space and reconstructed images are conditioned on the label, enabling the
generation of digit-specific MNIST images by sampling latent vectors and decoding them with the
desired labels. The architecture effectively integrates both image and label information for condi-
tional generation.

4 TRAINING MODEL

4.1 DATASET

The MSCOCO 2017 Dataset is a subset of the Common Objects in Context (COCO) dataset de-
signed for image captioning. It contains 123,287 images (118,287 for training and 5,000 for val-
idation), each paired with five human-annotated captions. Featuring diverse everyday scenes, the
dataset is ideal for tasks such as image captioning and understanding vision language. The im-
ages are stored as . jpg files, with captions provided in JSON format linking the image IDs to the
descriptive text. COCO also includes bounding boxes and object categories, supporting multitask
learning across 80 classes. We built the training data set by cropping and scaling the aligned images
to 224 x 224 pixels. This data set trains the CVAE to handle more complex and long input
text. The Fashion-MNIST Dataset is a large-scale data set designed as a drop-in replacement for
the original MNIST dataset, which allows for benchmarking machine learning algorithms on more
complex visual patterns. It consists of 70,000 grayscale images of size 28 x 28 pixels, split into
60,000 training images and 10,000 test images.This data set trains the CVAE to generate multi-
ple images from simple text inputs. Due to computational constraints, our model is trained on a
10% subset of the original COCO training dataset.

4.2 LONG-TEXT TRAINING

The long-text CVAE is trained by integrating the features of the image and the text, where the in-
put image and the condition of the text (encoded using CLIP) are combined and passed through
the encoder. In one approach, the text condition is concatenated with the image at the input stage;
in another, it is added to the tensor after passing through the first few convolutional layers. The
encoder computes the latent distribution parameters, mean (1) and log variance (log o2), which are
then sampled using the reparameterization trick to obtain latent variables (z). The decoder recon-
structs the image using z and the condition, outputting normalized pixel values through a sigmoid
activation. The model is trained for 20 epochs on the MS-COCO 2017 dataset, using a batch size
of 64, a latent dimension of 128, and a learning rate of 0.0001 with the Adam optimizer. Training
minimizes a combined loss of Binary Cross-Entropy (BCE) for reconstruction accuracy and KL
Divergence to regularize the latent space. Despite experimenting with deeper encoder networks and
attention layers, these changes showed no significant improvement over the base architecture.

4.3 SHORT-TEXT TRAINING

The CVAE model, initialized with an input dimension of 28 x 28, a label dimension of 10, and a
latent space dimension of 20, is trained using the Adam optimizer with a learning rate of 1 x 103.
During training, images are flattened, normalized, and combined with the one-hot labels before be-
ing passed to the Encoder, which outputs the latent mean (y) and log-variance (log(c?)). Using the
reparameterization trick, a latent vector (z) is sampled and passed, along with the labels, to the De-
coder, which reconstructs the input images. The loss function combines BCE (reconstruction loss)
and KL divergence (latent space regularization), which is minimized through backpropagation.
Over 50 epochs, the model iteratively updates its parameters to conditionally generate high-quality
images based on the labels, with the average training loss monitored after each epoch to ensure
convergence.
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5 RESULTS

5.1 LONG-TEXT GENERATED IMAGES

We trained the model saved the parameters after 50, 100, 150, 200, 250, and 300 epochs. By
comparing the results, we observed that the quality of images generated from long-text conditions
peaked at 250 epochs and gradually declined when training reached 300 epochs.
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Figure 3: Quality of the generated images increased and then decreased after 250 epochs

300 Epochs

5.1.1 QUANTITATIVE EVALUATION OF TEXT-TO-IMAGE RESULTS

For quantitatively analyzing our generation model performance, we use two metrics:

1. CLIP Score: Measure the semantic similarity between the generated images and the text
prompts, capturing how well the model can translate text into corresponding visual out-

puts/Zhengwentai| (2023)

2. Fréchet Inception Distance (FID): Evaluate the realism of the generated images by com-
paring their statistics to those of real images/Heusel et al/| (2017)

Epoch=50 Epoch=100 Epoch=150 Epoch=200 Epoch=250 Epoch=300
Clip Score  0.1951 0.2023 0.2001 0.1992 0.1999 0.2002
FID 326.70 321.86 315.62 314.98 313.64 295.40

Table 3: Performance metrics (CLIP Score and FID) over different epochs.

Table 3 presents the CLIP Score and FID values over different training epochs, ranging from 50 to
300. The CLIP Score nearly does not change indicating generated images are not well aligned with
text input with epochs increasing. Concurrently, the FID metric decreases from 326.70 to 295.40,
suggesting the generated images become more realistic over the course of training.
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Latent Dim=128 Latent Dim=256 Latent Dim=512 Latent Dim=1024
Clip Score 0.2023 0.1998 0.1937 0.1886
FID 286.06 315.01 306.73 305.43

Table 4: Performance metrics (CLIP Score and FID) for different latent dimensions.

Table 4 further explores the impact of latent dimension size on the model’s performance. The best
CLIP Score of 0.2023 is achieved with a latent dimension of 128, while the lowest FID of 305.43 is
obtained with a latent dimension of 1024.

5.1.2 INFLUENCE OF LATENT SPACE DIMENSION ON IMAGE GENERATION

In order to further understand the effect of latent space, we investigated the influence of the latent
space dimension on Image Generation.

(a) Latent Dimension = 128 (b) Latent Dimension = 256
(c) Latent Dimension = 512 (d) Latent Dimension = 1024

Figure 4: Image Generation Comparison with Different Latent Dimensions

The results indicate that as the latent dimension increases, image resolution improves, but the quality
of segmented features deteriorates. This suggests that there is still room for improvement in the
model structure. Simply increasing the size of the latent dimension does not necessarily lead to
better model performance.

5.2 SHORT-TEXT GENERATED IMAGES

Figure 4 demonstrates the output of a Conditional Variational Autoencoder (CVAE) trained on the
Fashion MNIST dataset. The CVAE can generate images based on the provided class labels, corre-
sponding to different clothing items. Single label is able to generate diverse images that align with
the given label descriptions.
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The results show the CVAE generates visually plausible images aligned with the given labels, except
for the “Invalid” class, which the model has not been trained on, resulting in a distorted output.

5.3 FIGURE RECONSTRUCTION

Similarly, we used models trained for different epochs to reconstruct images. The performance
improved before 250 epochs but started to decline after 250 epochs.

Figure 6: Quality of the reconstructed images increased and then decreased after 250 epochs

6 SUMMARY

Text-to-image generation is a significant area in deep learning that combines natural language un-
derstanding with image synthesis. This project explored the use of Conditional Variational Autoen-
coders (CVAEs) and Contrastive Language—Image Pre-training (CLIP) embeddings for this task.
Autoencoders compress and reconstruct data using an encoder-decoder framework, while VAEs ex-
tend this concept by introducing probabilistic latent spaces, enabling generative capabilities. By
leveraging CLIP embeddings, which capture semantic relationships between text and images, our
project integrated these techniques to perform text-to-image generation. This approach provided an
opportunity to understand how CVAEs and CLIP work together to translate textual descriptions into
visual content. Although the project was conducted as a course exercise, it highlighted the founda-
tional principles and challenges of building models that connect language and vision, contributing to
our understanding of these technologies. This project was conducted with assistance from ChatGPT.

AUTHOR CONTRIBUTIONS

Short-Text MNIST Generation: Chengkun Yang, Qinmeng Yu
Long-Text ms-CoCo Generation: Chengkun Yang, Yixuan Yang, Qinmeng Yu, Kechao Lu
Report: Chengkun Yang, Yixuan Yang, Qinmeng Yu, Kechao Lu



Final Report for ECE 685D

REFERENCES

P. Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML
Workshop on Unsupervised and Transfer Learning, pp. 37-49. IMLR Workshop and Conference
Proceedings, June 2012.

S. Bond-Taylor, A. Leach, Y. Long, and C.G. Willcocks. Deep generative modelling: A compar-
ative review of vaes, gans, normalizing flows, energy-based and autoregressive models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(11):7327-7347, 2021. doi:
10.1109/TPAMI.2021.3087591.

M. Ding. The road from mle to em to vae: A brief tutorial. Al Open, 3:29-34, 2022. doi: 10.1016/
j-aiopen.2022.01.003.

J. Gartner and M. Romanov. The advantages of ai text to image generation. International Journal
of Art, Design, and Metaverse, 2(1):1-8, 2024.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

B. Ivanovic, K. Leung, E. Schmerling, and M. Pavone. Multimodal deep generative models for
trajectory prediction: A conditional variational autoencoder approach. IEEE Robotics and Au-
tomation Letters, 6(2):295-302, 2020.

H.K. Ko, G. Park, H. Jeon, J. Jo, J. Kim, and J. Seo. Large-scale text-to-image generation models for
visual artists’ creative works. In Proceedings of the 28th International Conference on Intelligent
User Interfaces, pp. 919-933, March 2023.

E. Pintelas, L.LE. Livieris, and P.E. Pintelas. A convolutional autoencoder topology for classification
in high-dimensional noisy image datasets. Sensors, 21(22):7731, 2021. doi: 10.3390/s21227731.

X. Shen, H. Su, S. Niu, and V. Demberg. Improving variational encoder-decoders in dialogue
generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, April
2018.

K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. In Advances in Neural Information Processing Systems, volume 28, 2015.

V. Udandarao. Understanding and fixing the modality gap in vision-language models. Master’s
thesis, University of Cambridge, 2022.

SUN Zhengwentai. clip-score: CLIP Score for PyTorch. https://github.com/taited/
clip-score, March 2023. Version 0.1.1.


https://github.com/taited/clip-score
https://github.com/taited/clip-score

	Introduction
	Background Information
	Autoencoder
	Encoder
	Decoder

	Variational Autoencoders (VAEs)
	Key Features of VAEs

	Loss Function: Evidence Lower Bound (ELBO)
	Conditional VAE

	Our Model
	Long-Text Model
	Short-Text Model

	Training Model
	Dataset
	Long-Text Training
	Short-Text Training

	Results
	Long-Text Generated Images
	Quantitative Evaluation of Text-to-Image Results
	Influence of Latent Space Dimension on Image Generation

	Short-Text Generated Images
	Figure Reconstruction

	Summary

